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Abstract

We study in this paper conjugate heat transfer by natural convection, conduction and radiation in an inclined square enclosure bounded by a
solid wall with its outer boundary at constant temperature while the opposing active wall is with a constant heat flux. We solved two-dimensional
coupled equations of conservation of mass, momentum and energy, with the Boussinesq approximation using finite difference method and the
SIMPLER algorithm. Various parameters were: Rayleigh number from 108 to 3 × 1010, dimensionless conductivity of bounding wall from 10 to
40 and dimensionless wall width from 0 to 0.15, aspect ratio equal to 1, the inclination angle 60 to 150◦ and the surface emissivity from 0 to 1.
We presented the results in terms of heat flux and Nusselt number as a function of the Rayleigh number and other dimensionless parameters, as
well as in terms of flow and temperature fields. We found that the interaction among the three modes of heat transfer was significant, the influence
of the surface radiation on the natural convection was non-negligible and the flow and temperature fields as well as the heat transfer across the
enclosure were modified.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Enclosures with bounding walls are encountered when sim-
ulating building components, in particular passive heating and
cooling systems. In other applications, such as cooling of elec-
tronic components, various types of boards are used. In direct
gain passive solar systems, the dwelling is simulated as a two
dimensional enclosure having two vertical walls, one transpar-
ent and the other massive, which are bounded by two horizon-
tal insulated boundaries. Heat transfer by a constant heat flux
through the transparent vertical wall simulates solar radiation
reception while a massive wall with an isothermal condition
at the outer boundary simulates the adjacent building compo-
nent at constant temperature at its outer boundary (e.g., [1]). In
other applications like cooling of electronic components, we en-
counter similar systems, which consist always of a board with
finite thickness and conductivity and heater with constant heat
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flux (e.g., [2]). Heat transfer in these systems is usually by com-
bination of natural convection, conduction and radiation.

During the last two decades, various studies dealing with
natural convection as well as natural convection—conduction
in enclosures have been published (e.g., [3–6]). These stud-
ies have focused on the effect of geometrical parameters, the
Rayleigh number, inclination angle on the heat transfer and flow
field. In case of natural convection—conduction heat transfer,
the conjugate transfer has been solved to study the influence of
conduction on natural convection. In most of the cases, bound-
ary conditions have been isothermal vertical walls and adiabatic
horizontal walls. Few have also considered constant heat flux on
one of the vertical walls simulating solar radiation.

There are several studies on conjugate heat transfer by nat-
ural convection and surface radiation (e.g., [7–12] and the ref-
erences therein). Indirectly related to the problem encountered
in passive systems, Akiyama and Chong [7] studied heat trans-
fer by natural convection and radiation in a differentially heated
square cavity in which two vertical walls were isothermal and
the two horizontal walls adiabatic. They showed that the in-
fluence of radiation on natural convection was non-negligible.
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Nomenclature

A enclosure aspect ratio, = L/H

Aj surface area of element j . . . . . . . . . . . . . . . . . . . m2

cp heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
Fij configuration factor
g acceleration due to gravity . . . . . . . . . . . . . . . . m/s2

H cavity height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K
kr conductivity ratio
L cavity width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
l wall thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Nr radiation number, = σT 4∞/q ′′
Nu Nusselt number
Nur radiation Nusselt number, = hrH/kf

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless pressure, = (p − p∞)H 2/ρα2

f

Pr Prandtl number, = υ/αf

Qj power at element j . . . . . . . . . . . . . . . . . . . . . . . . . . W
q ′′ heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

q dimensionless heat flux, = − ∂θ
∂X

+ Nrζ

qc convective heat flux . . . . . . . . . . . . . . . . . . . . . W/m2

qr radiative heat flux . . . . . . . . . . . . . . . . . . . . . . . W/m2

qt combined heat flux . . . . . . . . . . . . . . . . . . . . . . W/m2

Ra Rayleigh number, = gβq ′′H 4/(υαf k)

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U,V dimensionless fluid velocities, = uH/αf , vH/αf

V̇ volume flow rate through the vents in [11]
w dimensionless wall thickness, = 
/H

X,Y dimensionless Cartesian coordinates, = x/H , y/H

x,y Cartesian coordinates

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s

αr thermal diffusivity ratio, = αs/αf

β volumetric coefficient of thermal expansion 1/K
Γ general diffusion coefficient
δij Kronecker delta
ε surface emissivity
ζ dimensionless radiative heat flux, = qr/σT 4∞
Θ temperature ratio, = T/T∞
θ dimensionless temperature, = (T − T∞)/(Hq ′′/k)

υ kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . m2/s
ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

σ Stefan–Boltzmann constant
τ dimensionless time, = αt/H 2

ψ stream function
ϕ inclination angle

Superscripts
– average

Subscripts

c convection
ext extremum
f fluid
i c, r, t

r radiation, ratio
s solid
t total or combined
∞ ambient value
1 at the left vertical boundary, X = 0
2 at the right vertical boundary, X = A
Ramesh and Venkateshan [8] studied experimentally the effect
of surface radiation on heat transfer by natural convection in a
differentially heated and horizontal walls insulated square cav-
ity. They demonstrated that the surface radiation suppressed
natural convection. Balaji and Venkateshan [9] studied numeri-
cally the interaction between surface radiation and natural con-
vection in a square cavity and presented a parametric study
on the effect of surface radiation. Mezrhab and Bchir [10,11]
and Mezrhab et al. [12] studied numerically the conjugate heat
transfer by three modes in a differentially heated square cavity
containing a solid object and with its horizontal walls adiabatic.
They reported that the solid object did not alter significantly the
heat transfer rate through the cavity and they presented flow and
temperature fields and overall heat transfer as a function of con-
ductivity ratio, Rayleigh number and a geometric parameter.

The studies in [7–12] have been on the surface radiation ef-
fect on the natural convection in differentially heated square
cavities with isothermal side walls and adiabatic horizontal
walls. In various applications encountered in solar technology,
such as solar receivers, the wall temperature is not uniform; in-
stead, the temperature is variable as a consequence of the heat
flux imposed on its side. Depending on the density of heat flux
from the side with zero wall thickness and on geometrical and
thermal conditions of a wall with finite thickness and conductiv-
ity, various interactions between convection—conduction and
radiation will result. Our aim in this study is to determine the
effect of the surface radiation on the conjugate heat transfer by
natural convection and conduction in an inclined enclosure hav-
ing two active sides and the two others insulated. One of the
active sides is subject to a constant heat flux and the other one
with finite wall thickness and conductivity. We would also study
the effect of the other parameters such as wall thickness, its con-
ductivity and the inclination of the enclosure on the convective
and radiative heat transfer.

2. Problem description and mathematical model

The system to study is shown in Fig. 1. It is an enclosure
bounded on the right by a massive wall with a finite wall thick-
ness and conductivity. We impose a constant heat flux on the
left active wall to simulate solar radiation input and a constant
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Fig. 1. Schematic of square enclosure bounded by a solid wall, the coordinate
system and boundary conditions.

temperature on the right outer boundary of the wall to simulate
uniform fluid temperature at the adjoining space. The horizon-
tal boundaries are adiabatic. Boundary conditions are shown in
Fig. 1.

2.1. Convection and conduction formulation

We assume that the fluid is Newtonian, and the third di-
mension has a negligible effect on the flow and heat transfer.
With these assumptions, we use two-dimensional conservation
equations for mass, momentum and energy with Boussinesq
approximation. By using H as the length scale, αf /H as the
velocity scale, Hq ′′/k as the temperature scale, ρα2

f /H 2 as the

pressure scale and H 2/αf as the time scale, we obtain follow-
ing non-dimensional equations

∂U

∂X
+ ∂V

∂Y
= 0 (1)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y

= −∂P

∂X
+ Γ Pr∇2U + Ra Prθ cosϕ (2)

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y

= −∂P

∂Y
+ Γ Pr∇2V + Ra Prθ sinϕ (3)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
= αr∇2θ (4)

We note that to obtain steady state solutions, we are using un-
steady state equations for better convergence in the numerical
computation. Γ in Eqs. (2) and (3) is a general diffusion co-
efficient, which is equal to 1 in the fluid region and 1015 in
the solid region; it is introduced to ensure that U = V = 0 ev-
erywhere including at the solid–fluid interface. αr in Eq. (4) is
the ratio of the thermal diffusivities αs/αf and it is equal to 1
in the fluid region and αs/αf in the solid region. In numeri-
cal simulation at each time step, we have to satisfy the energy
conservation at the interface between the solid and the fluid,
i.e. in the X direction, for example, ks∂θs/∂X = kf ∂θf /∂X or
kr∂θs/∂X = ∂θf /∂X with kr = ks/kf . For the steady state so-
lution, we have αr∇2θ = 0 which becomes kr∇2θ = 0; thus,
we have to specify only the conductivity ratio, kr for the steady
state solution of the problem.

2.2. Radiation formulation

We assume that the walls are diffuse and grey, and the air
is a non-absorbing medium. For an area on a surface, the non-
dimensional energy conservation equation is [13]

N∑
j=1

(δij − Fij )σT 4
j =

N∑
j=1

[
δij − (1 − εj )Fij

]qj

εj

(5a)

where

δij =
{

1, if i = j

0, if i �= j
and qj = Qj/Aj .

Using the definitions of Θ = Ti/T∞ and ζi = qi/σT 4∞ we ob-
tain
n∑

j=1

(δij − Fij )Θ
4
j =

n∑
j=1

[
δij − (1 − εj )Fij

] ζj

εj

(5b)

At the surface:

Nrζ =
(

∂θf

∂X
− kr

∂θs

∂X

)
(6)

where Nr = σT 4∞/q ′′ is the radiation number, ∂θf /∂X and
∂θs/∂X are the heat flux from the wall surface to the fluid on
the right and to the solid on the left, respectively.

The governing parameters are Ra = gβq ′′H 4/(υαk), Pr =
υ/α, kr , ε, and A = L/H and w = l/H .

The average convective and radiative Nusselt numbers are
calculated at X = 0 plane as

Nuc = −
1∫

0

1

θ

∂θ

∂X
dY (7)

Nur =
1∫

0

1

θ
Nrζs dY (8)

The stream function is calculated from its definition as

U = −∂ψ

∂Y
, V = ∂ψ

∂X
(9)

ψ is zero on the solid surfaces and the streamlines are drawn by
�ψ = (ψmax − ψmin)/n with n is the number of increments.

Boundary conditions are

On solid surfaces:

U = 0, V = 0 (10)



874 H.F. Nouanegue et al. / International Journal of Thermal Sciences 48 (2009) 871–880
Table 1
Validation study of natural convection and conduction in a square enclosure [6]

[6] This study

Ra 103 104 105 106 103 104 105 106

kr = 5 Nu 1.070 1.720 2.850 4.650 1.054 1.803 2.988 4.586
kr = 10 Nu 1.070 1.720 2.950 4.910 1.068 1.806 2.975 4.979

X = 0 to A − w, at Y = 0 and 1:

− ∂θ

∂Y
+ Nrζ = 0 (11a)

X = A − w to A, Y = 0 and 1:

∂θ

∂Y
= 0 (11b)

X = 0, Y = 0 to 1:

q = − ∂θ

∂X
+ Nrζ = 1 (12)

X = A, Y = 0 to 1:

θ = 0 (13)

3. Numerical technique

The numerical method used to solve Eqs. (1) to (6) with
the boundary conditions Eqs. (10) to (13) is the SIMPLER
(Semi-Implicit Method for Pressure Linked Equations Revised)
algorithm [14]. The computer code based on the mathematical
formulation presented above and the SIMPLER method were
validated with the benchmark [15]. The results showed that the
deviations in Nusselt number and the maximum stream func-
tion at Ra = 105 were 1.84% and 0.97%, respectively. Similarly
at Ra = 106, they were 1.74% and 1.09%, respectively. It was
seen that the concordance was excellent. In addition, the aver-
age Nusselt numbers at the hot and cold walls were compared,
which showed a maximum difference of about 0.5% in all runs.
The present code was tested also to simulate the case of conju-
gate heat transfer by conduction and convection in enclosures
bounded by a solid wall [6]. The results are presented in Ta-
ble 1, which shows an excellent agreement. Additionally, we
simulated the case of conjugate heat transfer by convection,
conduction and radiation in a partitioned square enclosure [11].
The results are presented in Table 2, which shows good agree-
ments.

Non-uniform grid in X and Y direction was used for all
computations. Grid convergence was studied for the case of
square cavity having w = 0.05 and kr = 20 with grid sizes from
35×30 to 85×80 at Ra = 109. The results are presented in Ta-
ble 3. We see that for grid sizes of 55 × 50 and 85 × 80, the
variation in convective Nusselt number is 0.15%, in radiative
Nusselt number it is 4.95% and in radiative heat flux 0.07%.
Thus, 55×50 grid size was a good choice from the computation
time and precision point of view for the square cavity. The grid
size in the wall was 5 in the X direction for all cases and the rest
were in the cavity. We obtained similar results at Ra = 3 × 1010

as can be seen in Table 3. Using a computer with a dual pro-
cessor of 1.83 GHz clock speed, for A = 1, with 55 × 50 grid
Table 2
Validation study of natural convection, conduction and radiation in a square
partitioned enclosure

[11] This study

Ra 106 107 108 106 107 108

w 0.025 Nu 11.00 17.00 29.00 11.19 17.81 29.03
0.050 12.80 21.50 31.00 12.61 21.80 31.43
0.100 13.60 21.50 31.00 13.78 22.32 31.43
0.150 14.10 21.50 31.00 13.67 21.98 30.97
0.200 15.00 21.50 31.00 14.61 22.95 31.58

w 0.025 V̇ 3.00 14.00 39.00 3.17 14.51 40.33
0.050 8.00 25.00 50.00 8.23 25.27 50.88
0.100 12.50 29.00 49.00 12.15 30.72 53.46
0.150 13.15 30.00 50.00 12.72 29.62 49.37
0.200 13.90 30.00 50.00 13.76 31.53 53.72

Table 3
Grid independence study at Ra = 109 and 3 × 1010 with A = 1, w = 0.10,
kr = 20, ϕ = 90◦

Ra Size Nuc % Nur % qr/qt % Exec t

(s)

1 × 109 35 × 30 14.344 1.76 22.703 16.89 0.889 0.45 17
45 × 40 14.100 0.03 21.289 9.61 0.891 0.15 26
55 × 50 14.075 0.15 20.383 4.95 0.892 0.07 36
65 × 60 14.025 0.50 19.955 2.75 0.893 0.00 51
75 × 70 14.058 0.27 19.590 0.87 0.893 0.00 68
85 × 80 14.096 0.00 19.421 0.00 0.893 0.00 89

3 × 1010 35 × 30 29.330 0.88 20.024 11.25 0.768 2.08 66
45 × 40 29.839 0.84 18.948 5.28 0.769 1.85 95
55 × 50 30.067 1.61 18.709 3.95 0.773 1.40 80
65 × 60 29.613 0.08 18.251 1.40 0.779 0.59 104
75 × 70 29.544 0.16 18.241 1.35 0.784 0.03 121
85 × 80 29.590 0.00 17.998 0.00 0.784 0.00 162

size, at Ra = 109, the typical execution time was 36 s and at
Ra = 1010, it was 80 s. We carried out tests to obtain the most
favourable relaxation coefficient for converged solutions. We
varied the relaxation coefficient of temperature and found that
0.5 was satisfactory to obtain converged solution with reason-
able computation times. A similar study showed the relaxation
coefficient of 0.1 produced stable solutions for velocity field.

A converged steady state solution was obtained by iterating
in time until variations in the primitive variables between sub-
sequent time steps were:∑∣∣(ϕold

i,j − ϕi,j )
∣∣ < 10−4 (14)

where ϕ stands for U , V , and θ .
Within the same time step, the residual of the pressure term

was less than 10−3 [14]. In addition, the accuracy of the solu-
tion was double-checked using the energy conservation on the
domain to ensure it was less than 10−4.

4. Results and discussion

The aspect ratio is constant A = 1. The variable geometrical
parameter is the dimensionless wall thickness, w = 0.0, 0.05,
0.10 and 0.15. The Rayleigh number is varied from Ra = 108 to
3×1010. The Prandtl number, Pr = 0.70 for air is kept constant.
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(a)

(b)

Fig. 2. Streamlines and isotherms for A = 1, w = 0.0, ϕ = 90◦ and ε = 0.0 and
1.0. (a) Ra = 108, (b) Ra = 1010. Streamlines are shown in the first row and
the isotherms in the second for each case. The inserts in (b) are the enlarged
isotherms at the left upper corner of the enclosure.

The conductivity ratio is varied from kr = 10, 20 and 40, which
are representative of materials like silica, Teflon and glass, re-
spectively. The inclination angle ϕ is varied from 60 to 180◦
with ϕ = 90◦ for horizontal position. We will present first the
results for the case with A = 1 and ϕ = 90◦, and then the ef-
fect of ϕ on the results. We will be using the Rayleigh number,
Ra = gβq ′′H 4/kαf ν to present both Nuc and Nur computed at
X = 0 plane by Eqs. (7) and (8), respectively, and the combined
Nusselt number, Nut .

For the simulation of the system shown in Fig. 1, we spec-
ified H = 0.727 m, T∞ = 300 K. We had the following range
(a)

(b)

Fig. 3. Streamlines and isotherms for A = 1, w = 0.10, ϕ = 90◦ , kr = 20 and
ε = 0.0 and 1.0. (a) Ra = 108, (b) Ra = 1010. Streamlines are shown in the first
row and the isotherms in the second for each case.

for the radiation number: 4592.7 > Nr > 15.3 at Ra from 108

to 3 × 1010, respectively; i.e. Nr is a decreasing function of Ra.

4.1. Flow patterns and isotherms

We will examine the influence of the surface radiation on
the flow and temperature fields for the case of A = 1, w = 0
and 0.10, ε = 0 and 1, kr = 20 and Ra = 108 and 1010. We
present the case with w = 0 in Fig. 2 and with w = 0.10 in
Fig. 3. The flow pattern and isotherms for the surface emissivity
ε = 0 are shown in the first column and for ε = 1 in the second
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of Figs. 2 and 3. We note also that for a fair comparison, we
kept the increment of �Ψ = 5 for streamlines and �θ = 2 ×
10−3 for isotherms in all iso-figures except the inserted figures
in Fig. 2(b). The latter was set at �θ = 1 × 10−2 for ε = 0 and
1 × 10−3 for ε = 1 to differentiate the isotherms at the upper
corner.

For the case with w = 0 at Ra = 108 in Fig. 2(a), the stream-
lines for ε = 0 show a stratified and boundary layer flow on
the left and right boundaries. For ε = 1, the flow field is com-
pletely modified though the circulation strength is a little less
than that for ε = 0. Indeed, Ψext for ε = 0 is −23.23 (X =
0.9133, Y = 0.475) and for ε = 1 it is −21.55 (X = 0.2897,
Y = 0.766). We see that the extremum is shifted upward and
a second circulation is present at the lower right part. The
isotherms complement the observation about streamlines. The
equally distanced isotherms show that the temperature field for
ε = 0 is intense and the temperature gradients are large at the
active walls and they are small and reduced by an order of mag-
nitude for ε = 1. In Fig. 2(b), at Ra = 1010 the circulation is
enhanced; Ψext for ε = 0 is −60.91 (X = 0.9593, Y = 0.452)
and for ε = 1 it is −70.74 (X = 0.7757, Y = 0.100). The circu-
lation for ε = 1 is increased with respect to that for ε = 0 and
there are multiple cells formed. We note that high velocity gra-
dients are equally present on horizontal adiabatic boundaries;
the strength of circulation in this case is increased by 16% with
the surface radiation. Additionally, at the corners of the left ac-
tive wall, the circulation is more intensive than that for ε = 0.
The isotherms for ε = 0 show that the pattern described in (a)
is the same but weakened with lower temperature gradients in
the boundary layer flow. For ε = 1, the temperature field is sim-
ilar to that in (a) but the gradients are much higher than those
for Ra = 108. However comparing the cases with ε = 0 and
ε = 1 we see that generally the temperature field is more in-
tense and the gradients much higher for ε = 0 than ε = 1. Thus,
despite increased strength of circulation, it is expected that the
convective heat transfer be decreased with surface radiation. To
differentiate better, we reproduced the isotherms at the upper
corner with �θ = 10−2 for ε = 0 and �θ = 10−3 for ε = 1
and shown as inserts in Fig. 2(b). We note the high tempera-
ture gradients for ε = 1 near the corner despite generally lower
gradients elsewhere; we will discuss it later when presenting lo-
cal temperature and the local Nusselt number on the left active
wall.

For the case with w = 0.10 at Ra = 108 in Fig. 3(a), the
streamlines for ε = 0 show a similar stratified and boundary
layer flow to that with w = 0, though the strength of circula-
tion is decreased due to the wall thermal resistance; Ψext for
this case is −21.52 (X = 0.8098, Y = 0.475) and the strength
of the circulation is decreased by 7.4% with respect to that in
Fig. 2(a). The appearance of isotherms is almost the same as
with w = 0, although the intensity of the temperature field is in-
creased slightly. Obviously this is an indication of reduced con-
vection due to the presence of the wall. For ε = 1, the flow and
temperature fields look similar to those with w = 0. In compar-
ison with the ε = 0 case, the strength of circulation is slightly
decreased with Ψext = −21.11 (X = 0.2960, Y = 0.766). At
Ra = 1010 in Fig. 3(b), for ε = 0, we have the flow and temper-
Fig. 4. Dimensionless heat fluxes by convection and radiation as a function of
the Rayleigh number for the case of A = 1, w = 0.10, ϕ = 90◦ , and ε = 0.0
and 1.0 with kr variable from 10 to 40.

ature fields similar to those w = 0 but the circulation strength is
reduced by 12.3% and the temperature gradients increased. For
this case Ψext = −53.39 (X = 0.8574, Y = 0.475). For ε = 1,
the flow and temperature fields are slightly modified with in-
creasing Rayleigh number, however the pattern is the same. The
strength of circulation Ψext = −68.33 (X = 0.6906, Y = 0.101)
is higher due to the presence of the wall. Again we observe mul-
tiple cells, a complete boundary layer flow on all four surfaces
and with low velocity and temperature gradients. In this case the
strength of circulation is increased by 28% with respect to that
with ε = 0. Lower temperature gradients with surface radiation
are an indication that the convective heat transfer will be lower
despite increased circulation strength with multiple cells. In the
case of surface radiation, the increase of the circulation strength
may be due to the fact that we have heat transfer by convection
at all four surfaces resulting in a chaotic multi-cellular pattern
however with lower temperature gradients at the active walls.

4.2. Heat transfer

The conjugate heat transfer is by convection and radiation
through the cavity, the combined heat flux, qt = q ′′ is the sum
of the heat fluxes, qc, qr which is transferred by conduction
through the wall. Hence

qc

qt

+ qr

qt

= 1 (15)

For the case with A = 1, w = 0.10 and ε = 0 and 1 with kr

as a parameter, we present qi/qt (i takes c and r) as a func-
tion of the Rayleigh number in Fig. 4. We see for all kr that
with ε = 0, i.e. no radiation exchange, qr/qt = 0 and qc/qt = 1.
With ε = 1, the radiative heat flux is much higher than the con-
vective heat flux, and qr/qt is a decreasing function of Ra while
qc/qt is an increasing function of it. As expected, the variations
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Fig. 5. Convective, radiative and combined Nusselt numbers as a function of
the Rayleigh number. A = 1, w = 0.10, ϕ = 90◦ , and ε = 0.0 and 1.0 with kr

is variable from 10 to 40.

of qc/qt and qr/qt are independent of the conductivity ratio,
kr since the sum of the two in Eq. (15) is always equal to 1
and constant, and qc/qt = 1 regardless of the Rayleigh number.
The same data plotted as Nui as a function of Ra presented in
Fig. 5 show that convective and radiative Nusselt numbers have
the same order of magnitude. Nur is slightly decreasing func-
tion of Ra while Nuc is an increasing function of it. Further, we
note that although Nur is quasi-independent of the conductiv-
ity ratio, Nuc is an increasing function of it. As a result, Nut is
an increasing function of the Rayleigh number. These observa-
tions in Figs. 4 and 5 are expected since the radiation number
is a decreasing function of the Rayleigh number as stated ear-
lier at the first paragraph of Section 4. As a result, we have Nur

is slightly increasing function of Nr and decreasing function of
Ra. In consequence, Nuc is a strong decreasing function of Nr

and an increasing function of Ra. The combined Nusselt num-
ber Nut is a strongly decreasing function of Nr and as a result,
it is an increasing function of Ra.

For the case with A = 1, w = 0.10 and kr = 20 with Ra from
108 to 1010, we plotted qi/qt as a function of ε from zero to one
in Fig. 6(a). We observe that qr/qt is a strong increasing func-
tion of ε and qc/qt is a decreasing function of it. The variation
is strong with ε increasing from zero up to ε = 0.6 thereafter
weak. The Nusselt numbers, Nuc , Nur and Nut as a function
of ε for the same case are presented in Fig. 6(b). As expected
from qi/qt versus ε results in Fig. 6(a), the radiative Nusselt
number is an increasing function of the surface emissivity and
the convective Nusselt number is a decreasing function of it.
Since the radiative Nusselt number is a strong increasing func-
tion of ε, the combined Nusselt number is also an increasing
function of it.

The influence of surface radiation on the temperature, θ and
the local convection Nusselt number, Nuloc along the boundary
Fig. 6. For the case of A = 1, w = 0.10, ϕ = 90◦ , kr = 20 and Ra from 108 to
1010, (a) dimensionless heat fluxes by convection and radiation as a function of
the surface emissivity, (b) convective, radiative and combined Nusselt numbers
as a function of the surface emissivity.

at X = 0 is presented in Fig. 7; the temperature is presented on
the left side and the local Nusselt number on the right for the
case of A = 1, w = 0.10, ϕ = 90◦ and kr = 20 with Ra = 1010.
We see in Fig. 7 that for ε = 0, i.e. no surface radiation, the vari-
ation of the temperature is non-linear and for ε = 1, it is almost
constant. These results are expected since for ε = 0, the cool-
ing is better at the lower parts of the wall because the incoming
air is cooler; then, as the air heated along the wall, the cooling
becomes less effective as a result of which the wall temperature
increases. For ε = 1, due to radiative exchange among the walls,
the wall temperature is almost constant with slight increase of
the wall temperature at the upper part. Thus, the influence of
surface radiation is far from negligible as it changes the tem-
peratures on the enclosure walls, including the adiabatic ones.
In a way, the radiation heat exchange plays the role of making
the active wall temperature quasi-uniform. For the same case,
the variation of the local Nusselt number on the right-hand side
of Fig. 7 is non-linear for ε = 0, higher at the bottom of the
enclosure, lower at the top, which is a consequence of the vari-
ation of the temperature discussed above. This is expected since
the convective heat transfer is higher for cooler fluid sweeping
the hot vertical wall than that of warmer fluid doing the same at
the top. The variation of the local Nusselt number is modified
for ε = 1 in such a way to have a high local Nusselt number at
the bottom and top of the active wall, and reduced values in be-
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Fig. 7. For the case of A = 1, w = 0.10, ϕ = 90◦ , kr = 20 and Ra = 1010,
the temperature at X = 0 along the wall for ε = 0.0 and 1.0 on the left side of
the figure and the local convective Nusselt number at X = 0 along the wall for
ε = 0.0 and 1.0 on the right.

Fig. 8. Convective, radiative and combined Nusselt numbers as a function of
the wall thickness for the case of A = 1, ϕ = 90◦ , kr = 20, ε = 0.0 and 1.0, and
Ra from 108 to 1010.

tween than those for ε = 0. These representative results confirm
our observations of the flow and temperature fields discussed
earlier with Figs. 2 and 3. Indeed, in the inserts of Fig. 2(b), we
note higher temperature gradients near the corner with ε = 1
than those with ε = 0 with isotherms bending towards the cor-
ner instead of following the horizontal boundary. The reason
for the increased temperature gradients is due to radiative heat
exchange between the insulated walls and the active vertical
walls. This pattern near the corners with surface radiation has
also been observed by Akiyama and Chong [7].

We noted earlier in Fig. 4 that qi/qt is independent of the
wall thickness, w. Indeed, a plot of qi/qt as a function of w
Fig. 9. Convective, radiative and combined Nusselt numbers as a function of
the enclosure inclination angle for the case of A = 1, kr = 20, ε = 0.0 and 1.0,
and Ra from 108 to 1010.

with A = 1, kr = 20, ε = 0 and 1 and Ra from 108 to 1010

showed that this was the case (not shown here). The same data
plotted as Nui as a function of w is presented in Fig. 8. For
ε = 0, the convective Nusselt number is an increasing function
of the Rayleigh number and a decreasing function of the wall
thickness. The latter is expected since the wall conductance de-
creases with increasing wall thickness. For ε = 1, at Ra = 108

and 109, Nur is slightly greater than Nuc and at Ra = 1010, Nur

is slightly smaller than Nuc . It appears also that the combined
Nusselt number, Nut goes through a broad maximum at about
w = 0.05.

4.3. Effect of the inclination angle

We present in Fig. 9 the convective, radiative and combined
Nusselt numbers as a function of the inclination angle, ϕ for
the case of A = 1, kr = 20, ε = 0 and 1 with Ra = 108, 109 and
1010. We observe that for ε = 0, the radiative Nusselt number is
zero and Nuc = Nut at all Rayleigh numbers Further, Nuc is an
increasing function of Ra and at each Rayleigh number, it goes
through a maximum at ϕ about 80◦. For ε = 1, Nur is quasi-
constant and equal to about 20.5 at all Rayleigh numbers, Nuc is
a decreasing function of ϕ, especially at high inclination angles.
The observed quasi-constancy of the radiative Nusselt number
is due to the fact that at a given Rayleigh number, i.e. at a cor-
responding radiation number, we found that the radiative heat
flux qr/qt was increased with the inclination angle ϕ. This is
expected because the convective heat flux qc/qt is a decreasing
function of the inclination angle and following equation (15),
the radiative heat flux should increase. At the same condition,
the average wall temperature θX=0 was also increased with the
inclination angle ϕ at the same rate as that of qr/qt . Indeed
we observed for Ra = 1010 for example that both qr/qt and



H.F. Nouanegue et al. / International Journal of Thermal Sciences 48 (2009) 871–880 879
θX=0 was quasi-constant for ϕ from 60 to 90◦, thereafter they
increased by 12.5% from 90 to 150◦. The Nusselt number be-
ing proportional to the heat flux divided by the temperature, we
found that the radiative Nusselt number Nur is quasi-constant as
presented in Fig. 9. The reason for the observed variation of Nuc

with the inclination angle will be visualized and explained later
in Fig. 10. The contribution of Nur is larger than that of Nuc at
Ra = 108 and 109. At Ra = 1010 however, the contribution of
Nuc is greater than that of Nur for ϕ up to 120◦, thereafter it re-
verses. The overall result is that due to the influence of surface
radiation, the convective Nusselt number is increased for low
inclination angle and decreased at high inclination angle, and
the combined Nusselt number, Nut is greatly increased due to
contribution of Nur . For example, at Ra = 1010, the increase in
Nut with respect to that with ε = 0 is about 31.8% at ϕ = 60◦
and 51.5% at ϕ = 150◦.

To see the influence of surface radiation on the flow and tem-
perature fields at different inclination angles, we present for the
case of A = 1, kr = 20, ε = 0 and 1 at Ra = 1010, streamlines
and isotherms for ϕ = 60, 120 and 150◦ in Fig. 10 (a)–(c), re-
spectively. The first row in each case is the flow field and the
second is the temperature field. Isolines are traced with �Ψ = 5
and �θ = 0.01 for ε = 0 and 0.001 for ε = 1 and to prevent
cluttering, the labels are shown only for the case of ϕ = 120◦
Fig. 10(b). We see in Fig. 10 (a)–(c) that for ε = 0 and 1, the
isotherms showing stratification in the enclosure are almost per-
pendicular to the vertical and the flow and temperature fields
are also modified accordingly. The influence of surface radi-
ation on the flow field in each case is to make the velocity
gradients significant on all four boundaries. The strength of cir-
culation is reduced with increasing ϕ for both ε = 0 and 1.
For ε = 0, Ψext is −104.4252, −21.4525 and −10.5591 for
ϕ = 60, 120 and 150◦, respectively; for ε = 1, it is −113.0185,
−40.4129 and −21.4166. We see also that the strength of the
circulation is increased considerably with surface radiation, es-
pecially for higher inclination angles. However, we see that the
flow fields became multi-cellular and the temperature gradient
is decreased, which is consistent with the heat transfer results
of Fig. 9.

5. Conclusion

We studied conjugate heat transfer by natural convection,
conduction and radiation in inclined square cavities boarded by
a solid wall with finite conductivity. The constant heat flux is
imposed on one of the active walls, the other being at isothermal
condition. The other two boundaries are adiabatic. The aspect
ratio is 1 and constant and the wall thickness is varied from 0.0
to 0.15. The Rayleigh number is varied from 108 to 3 × 1010,
the conductivity ratio from 10 to 40; the Prandtl number is 0.7.
Coupled conservation equations of mass, momentum and en-
ergy were solved by finite difference method using SIMPLER
algorithm. In view of the results presented, the main points can
be summarized as follows.

The surface radiation modifies the flow and temperature
fields. In particular, the temperatures on all enclosure walls are
modified; the velocity and temperature gradients are decreased.
(a)

(b)

(c)

Fig. 10. Streamlines and isotherms for (a) ϕ = 60◦ , (b) ϕ = 120◦ and (c) ϕ =
150◦ for the case of A = 1, w = 0.10, kr = 20, ε = 0.0 and 1.0 and Ra = 1010.
For each case, streamlines are shown in the first row and the isotherms in the
second.

The contribution of the surface radiation heat flux is more im-
portant than that of the natural convection at all Rayleigh num-
bers. Heat flux by natural convection increases gradually with
increasing Rayleigh number, as a consequence of which that by
radiation decreases gradually with it. The radiative heat flux is
a strong increasing function of the surface emissivity starting at
its low values; as a consequence, the convective heat flux is a
strongly decreasing function of it.

The convective Nusselt number Nuc is an increasing func-
tion of the Rayleigh number Ra and the radiative Nusselt num-
ber Nur is insensitive to its variation. As a result the combined
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Nusselt number Nut is an increasing function of Ra. The con-
vective Nusselt number Nuc decreases slightly with increasing
surface emissivity ε; thus, the effect of the surface radiation on
the convective Nusselt number is not as strong as that of the
Rayleigh number. The radiative Nusselt number Nur , on the
other hand, is an increasing function of the surface emissiv-
ity, ε. The convective and radiative Nusselt numbers have the
same order of magnitude and generally, the combined Nusselt
number Nut is an increasing function of ε. The influence of con-
ductivity ratio and wall thickness on the Nusselt numbers is not
significant; however Nur as well as Nut are slightly increasing
function of the wall thickness at its small values. The convec-
tive Nusselt number Nuc goes through a broad maximum at the
inclination angle of about 80◦ while the radiative Nusselt num-
ber Nur is not sensitive to its variation.

Acknowledgement

The financial support for this study by Natural Sciences and
Engineering Research Council Canada is acknowledged.

References

[1] E. Bilgen, J. Michel, Integration of solar systems in architectural and urban
design, in: A.A.M. Sayigh (Ed.), Solar Energy Application in Buildings,
Academic Press, 1979 (Chapter 19).

[2] A.E. Bergles (Ed.), Heat Transfer in Electronic and Microelectronic
Equipment, Hemisphere Publishing Corp., New York, 1990.
[3] C. Prakash, D.A. Kaminski, Conjugate natural convection in square en-
closure: Effect of conduction in one of the vertical walls, HTD ASME 39
(1984) 49–54.

[4] Z.-G. Du, E. Bilgen, Coupling of wall conduction with natural convection
in a rectangular enclosure, Int. J. Heat Mass Transfer 35 (1992) 1969–
1975.

[5] M. Mbaye, E. Bilgen, P. Vasseur, Natural convection heat transfer in an
inclined porous layer boarded by a finite thickness wall, Int. J. Heat Fluid
Flow 14 (1993) 284–291.

[6] R. Ben Yedder, E. Bilgen, Natural convection in inclined enclosures
bounded by a solid wall, Heat Mass Transfer 32 (1997) 455–462.

[7] M. Akiyama, Q.P. Chong, Numerical analysis of natural convection with
surface radiation in a square cavity, Numer. Heat Transfer Part A 31 (1997)
419–433.

[8] N. Ramesh, S.P. Venkateshan, Effect of surface radiation on natural con-
vection in a square enclosure, J. Thermophys. Heat Transfer 13 (3) (1999)
299–301.

[9] S. Balaji, S.P. Venkateshan, Interaction of surface radiation with free con-
vection in a square cavity, Int. J. Heat Fluid Flow 14 (1993) 260–267.

[10] A. Mezrhab, L. Bchir, Radiation-natural convection interactions in parti-
tioned cavities, Int. J. Num. Methods Heat Fluid Flow 8 (1998) 781–799.

[11] A. Mezrhab, L. Bchir, Radiation-natural convection interactions in parti-
tioned cavities, Int. J. Num. Methods Heat Fluid Flow 9 (1999) 186–203.

[12] A. Mezrhab, H. Bouali, H. Amaoui, M. Bouzidi, Computation of com-
bined natural convection and radiation heat transfer in a cavity having a
square body at its center, Appl. Energy 83 (2006) 1004–1023.

[13] R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, second ed.,
Hemisphere Publishing Corporation, Washington, 1981.

[14] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub-
lishing Corporation, New York, 1980.

[15] G. de Vahl Davis, Natural convection of air in a square cavity: A bench-
mark solution, Int. J. Numer. Methods Fluids 3 (1983) 249–264.


	Heat transfer by natural convection, conduction and radiation in  an inclined square enclosure bounded with a solid wall
	Introduction
	Problem description and mathematical model
	Convection and conduction formulation
	Radiation formulation

	Numerical technique
	Results and discussion
	Flow patterns and isotherms
	Heat transfer
	Effect of the inclination angle

	Conclusion
	Acknowledgement
	References


